CON-TREX® LP

Isokinetic leg press for testing and training the lower limbs in closed kinetic chain

Highlight features of CON-TREX® LP

Product description

The CON-TREX® LP leg press is an isokinetic testing and training machine for the entire leg extensor and flexor chain. It can provide metered, measurable forces from a few N to 6000 N at speeds of up to 1 m/sec. Separate footplates allow unilateral training (on the left or right), bilateral training with both legs, or alternating mode. The adjustable footplate fixtures can be varied for selective testing and improvement of ankle joints in various positions. The inclination of the backrest can be electrically lowered to the horizontal position, the seat angle is synchronized with the adjustment of the backrest. The low seat height facilitates placement of patients with reduced mobility.
The high level of precision of the metered, measurable forces and the exceptional properties of the motion monitor through the drive system produce an extremely versatile area of application on a minimum workspace of just 1.8 x 2.5 meters including the control module.
Due to the functional motion, the entire muscle chain of the lower limbs is strengthened, while the coordination is simultaneously improved and the joint stability increased. The optimally adjusted load and strain of the (atrophied) musculature beyond the entire radius of motion can bring about a very sharp increase in the muscle strength and a significant improvement to coordination. All of this occurs without any excessive strain on the joint, especially in physiologically awkward positions.

Features

  • high-precision isokinetic mode
  • ballistic mode
  • active compensation of gravity
  • unique combined load types
  • sampling rate of 4000 Hz for highest precision
  • play-free drive train
  • EMG synchronisation
  • three-level safety concept
  • individually customisable reports

human kinetics software

The human kinetics software allows easy separation of databases, thereby enabling different internal departments or scientific areas within the same facility to work independently. The presentation of the numerous report designs can be customised. Export to other data processing programs is done easily via the ASCII interface. Anonymisation of the data for scientific work is easily possible.
The detailed online help provides direct notes on the current menu item or the operation being performed, with images and graphics. Above all, the detailed information on the numerous movement performances clarifies both the positioning of the subject / patient and the use of the required adapters.

Therapy information

CON-TREX® can be used in early diagnostic and preventative therapy for injuries to the musculoskeletal system in out-patient rehabilitation and in the clinic. It is also used in scientific research and performance optimisation and facilitates the careful and specific analysis of problems and thus the highly efficient training of top athletes.

CON-TREX® machines are suited to measurement and analysis thanks to the high levels of precision and are thus especially well-suited to scientific use. In training and therapy, they aim to improve muscle capabilities (in both the strength and stamina areas) as well as sensorimotor skills.  Thanks to its versatile measuring capabilities and the intuitive exercise software, CON-TREX® is excellently suited to the following applications:


Orthopaedic rehabilitation and traumatology:
CON-TREX® enables the early diagnosis and prevention of damages or injuries to the musculoskeletal system in out-patient rehabilitation and in clinical use.

Diagnosis and rehabilitation of musculoskeletal deficiencies
Muscular disbalances can disrupt the ideal sequence of movements and may have damaging effects on the joints or, depending on the type of sport, can even be desirable or required. CON-TREX® helps to record, detect and analyse these disbalances. In addition, CON-TREX® machines can be used to efficiently eliminate muscular disbalances. One particular benefit is in the fact that the tested movement can be trained at the same time.

Joint replacement
CON-TREX® machines can be used in the area of geriatric rehabilitation after artificial joint replacement in particular. Even at very low available muscular strength patients can actively train and improve their muscularity at a sensible speed of motion. This means that the loss of strength is kept to a minimum and the mobility of the joints either remains the same or is improved.

Neurological rehabilitation:

When performance is diminished for neurological reasons, for example, after a brain injury or a stroke, rehabilitation work focuses on restoring coordination and control of the work done by the muscles. The German Society for Neurology demands the early functional mobilisation of patients who are after having suffered a stroke. CON-TREX® is suited to this task thanks to its exercise and training function in a continuously passive motion mode: The affected patient's limb is moved by CON-TREX® while the patient can simultaneously attempt to autonomously control and move the limb. CON-TREX® simultaneously visualises the ongoing performance of the patient, that is, training can be followed in real-time on the monitor and even the smallest of advances is immediately reproduced on the screen. This adds to the patient's motivation to increase the effectiveness of the rehabilitation through their active cooperation. This can only be achieved to a limited extent using "classic" training methods. Bio-feedback training, especially with a submaximal load, not only enables efficient correction of muscular deficiencies, but is also an excellent method of improving coordination abilities.

Optimised performance in competitive sports:
CON-TREX® machines are used in competitive sport, most of all when it comes to objectively evaluating physique and optimising the progression of training of competitive and top-level athletes. Various strength tests which can be carried out at regular intervals provide both trainers and athletes with precise feedback on the effectiveness of their training methods. Within the framework of motion analyses for the optimisation of motion sequences specific to particular sports, precise problem analyses can also be generated using combined EMG evaluations. When rehabilitating top athletes after injuries, CON-TREX® machines facilitate highly efficient training sessions and contribute towards the sensible use of the injury period.

Science and research:
Thanks to the high levels of precision of CON-TREX® machines, the objective evaluation of every patient at the highest validity rates possible is given. CON-TREX® archives all relevant system parameters which could be of importance to scientific evaluation. In addition, the unique ballistic mode ensures the smooth execution of both motion sequence and measurement. This active gravity compensation facilitates both absolute and relative observation of the values. When used in science and research, the CON-TREX® machines set previously unequalled high standards in regard to accuracy of measurement and reproducibility of the collected parameters. 

Accessories

Gebrauchsanweisung CON-TREX

Operating instructions CON-TREX®

Order number
Quantity
99999999
[1]
Schulterpolster anthrazit

Shoulder pad anthracite

Order number
Quantity
50750001
[2]
EMG Platine für MJ/WS/LP, V01

EMG board for MJ/WS/LP, V01

Order number
50990000
EMG Verbindungskabel

EMG interconnect cable

Order number
50520000
Fussplatte starr

Foot plate rigid

Order number
50500000
Fussplatte Standard, beweglich

Foot plate standard, flexible

Order number
50490000
Upgrade CON-TREX® PM

Upgrade CON-TREX PM

Order number
60000002

Bibliography

CON-TREX® - reliability and validity

Caruso J., Brown L.E., Tufano J.J. (2012): The reproducibility of isokinetic dynamometry data. Isokinet Exerc Sci 20:239–53. doi:10.3233/IES-2012-0477.

Cotte T., Ferret J.M. (2003): Comparative study of two isokinetic dynamometers: CYBEX NORM vs. CON-TREX® MJ. IOS Press Isokinetics and Exercise Science 11(1), 37-43.

Guilhem G., Giroux C., Couturier A., Maffiuletti N.A. (2014): Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry. J Electromyogr Kinesiol http://dx.doi.org/10.1016/j.jelekin.2014.07.006.

Maffiuletti N.A., Bizzini M., Desbrosses K., Babault N., Munziner U. (2007): Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clin Physiol Funct Imaging 27, 346-353.

Müller S., Baur H., König T., Hirschmüller A., Mayer F. (2007): Reproducibility of isokinetic single- and multi-joint strength measurements in healthy and injured athletes. Isokinetics and Exercise Science 15, 295-302.

Müller S., Mayer P., Baur H., Mayer F. (2011): Higher velocities in isokinetic dynamometry: A pilot study of new test mode with active compensation of inertia. IOS Press, Isokinetics and Exercise Science 19, 63–70 63, DOI 10.3233/IES20110398.

Müller S., Stoll J., Müller J., Mayer F. (2012): Validity of isokinetic trunk measurements with respect to healthy adults, athletes and low back pain patients. Isokinet Exerc Sci 20, 255–66. doi:10.3233/IES-2012-00482.

Müller J., Müller S., Stoll J., Fröhlich K., Baur H., Mayer F. (2014): Reproducibility of maximum isokinetic trunk strength testing in healthy adolescent athletes. Sports Orthop. Traumatol. 30, 229–237.

CON-TREX® - clinical and scientific application

Baray A.L., Philippot R., Farizon F., Boyer B., Edouard P. (2014): Assessment of joint position sense deficit, muscular impairment and postural disorder following hemi-Castaing ankle ligamentoplasty. Orthop Traumatol Surg Res 100 (6 Suppl), 271-4. doi:10.1016/j.otsr.2014.02.014. Epub 2014 Aug 22.

Baray A.L., Philippot R., Neri T., Farizon F., Edouard P. (2016): The Hemi-Castaing ligamentoplasty for chronic lateral ankle instability does not modify proprioceptive, muscular and posturographic parameters. 24(4), 1108-15. doi:10.1007/s00167-015-3793-3.

Baur H., Müller S., Hirschmüller A., Huber G., Mayer F. (2006): Reactivity, stability and strength performance capacity in motor sports. Br J Sports Med 40, 906-911.

Baur H., Müller S., Pilz F., Mayer P., Mayer F. (2010): Trunk extensor and flexor strength of long-distance race car drivers and physically active controls. J Sports Sci 28: 1183–1187.

Edouard P., Castells J., Calmels P., Roche F., Degache F. (2010): Cardiovascular and metabolic responses during isokinetic shoulder rotators strength testing in healthy subjects. ISSN 0959-3020/10 Isokinetics and Exercise Science 18, 23–29 23. doi:10.3233/IES-2010-0363 IOS Press 23-29.

Edouard P., Bankolé C., Calmels P., Beguin L., Degache F. (2013): Isokinetic rotator muscles fatigue in glenohumeral joint instability before and after Latarjet surgery: a pilot prospective study. Scand J Med Sci Sports 23(2), 74-80. doi:10.1111/sms.12011. Epub 2012 Nov 1.

Edouard P., Degache F., Oullion R., Plessis J.Y., Gleizes-Cervera S., Calmels P. (2013): Shoulder strength imbalances as injury risk in handball. Int J Sports Med 34(7), 654-60. doi:10.1055/s-0032-1312587. Epub 2013 Feb 26.

Francis P., Toomey C., Mc Cormack W., Lyons M., Jakeman P. (2016): Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging 28, n/a–n/a. doi:10.1111/cpf.12332.

Hirschmüller A., Konstantinidis L., Baur H., Müller S., Mehlhorn A., Kontermann J., Grosse U., Südkamp N.P., Helwig P. (2011): Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome? Injury 42, 1135–43. doi:10.1016/j.injury.2010.09.040.

Hirschmüller A., Andres T., Schoch W., Baur H., Konstantinidis L., Südkamp N.P., Niemeyer P., (2017): Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results. Orthopaedic Journal of Sports Medicine 5:232596711770372. doi:10.1177/2325967117703726.

Liebensteiner M.C., Platzer H.P., Burtscher M., Hanser F., Raschner C. (2012): The effect of gender on force, muscle activity, and frontal plane knee alignment during maximum eccentric leg-press exercise. Knee Surg Sports Traumatol Arthrosc 20, 510–516. DOI 10.1007/s00167-011-1567-0.

Mueller J., Mueller S., Stoll J., Baur H., Mayer F. (2014): Trunk Extensor and Flexor Strength Capacity in Healthy Young Elite Athletes Aged 11–15 Years. Journal of Strength and Conditioning Research 28, 1328–34. doi:10.1519/JSC.0000000000000280.

Mueller S., Mueller J., Stoll J., Cassel M., Hirschmüller A., Mayer F. (2017): Back Pain in Adolescent Athletes: Results of a Biomechanical Screening. SMIO 01, E16–E22. doi:10.1055/s-0042-122713.

Mueller S., Mueller J., Stoll J., Engel T., Mayer F. (2017): Back pain risk factors in adolescent athletes: suitability of a biomechanical screening tool? British Journal of Sports Medicine 51, 364–5. doi:10.1136/bjsports-2016-097372.205.

Rahm S., Spross C., Gerber F., Farshad M., Buck F.M., Espinosa N. (2013): Operative treatment of chronic irreparable Achilles tendon ruptures with large flexor hallucis longus tendon transfers. Foot Ankle Int 34(8), 1100-10. doi:10.1177/1071100713487725. Epub 2013 Apr 26.

Product combinations

Do you want to know more? Please contact us!